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In this paper, a novel lattice hydrodynamic model is presented by accounting for the traffic interruption 
probability on a gradient highway. The stability condition can be obtained by the use of linear analysis. 
Linear analysis demonstrates that the traffic interruption probability and the slope will affect the stability 
region. Through nonlinear analysis, the mKdV equation is derived to describe the phase transition of 
traffic flow. Furthermore, the numerical simulation is carried out, and the results are consistent with 
the analytical results. Numerical results demonstrate that the traffic flow can be efficiently improved by 
accounting for the traffic interruption probability on a gradient highway.
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1. Introduction

On urban residents’ daily lives, traffic jams have attached wide 
attention amongst scientists and researchers. In order to investi-
gate the properties of traffic jams and alleviate it, various traffic 
models have been put forward, which include car-following models 
[1–12], cellular automation models [13,14], macro traffic models 
[15–23], lattice hydrodynamic models [24–30] and so on.

According to the observed headway, drivers adjust their veloc-
ity. With the consideration of it, Nagatani [31] firstly put forward 
a lattice hydrodynamic model in 1998. As the traffic environment 
changes and time goes by, the traffic flow becomes more complex. 
On the basis of it, many extended lattice hydrodynamic models 
have been proposed. These novel models consider different factors 
like backward looking effect [32–35], the optimal velocity differ-
ence effect [36–40], the traffic flow difference effect [41,42], the 
self-anticipative density effect [43,44] etc. However, it is not dif-
ficult to find that many models consider the situation of vehicles 
on a single lane. While in actual traffic system, driving environ-
ments also have a certain impact on traffic congestions, such as 
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two-dimensional lattice models [45–49], curved roads [50–52], tri-
angular lattice models [53,54].

What’s more, the traffic models on a gradient highway are also 
worth studying. In 2014, Gupta et al. [55] put forward a new lat-
tice model on a gradient highway, which considered the effect of 
optimal velocity difference. Komada [56] proposed a car-following 
model accounting for the effect of gravitational force upon traf-
fic flow with gradients in 2009. Also, Sun et al. [57] presented an 
extended car-following model with considering drivers’ character-
istics on a gradient highway. Zhu [58] proposed a car-following 
model on a gradient highway, it showed that the slope plays an 
important role in influencing the tendency of density waves in dif-
ferent traffic flow regions. Actually, it is rare to study the influence 
of the traffic interruption probability on a gradient highway. Based 
on it, an extended lattice hydrodynamic model will be proposed to 
investigate its impact on traffic flow.

The paper is organized as follows: in the following section, the 
improved lattice hydrodynamic model is proposed, which consid-
ers the effect of the traffic interruption probability on a gradient 
highway. In section 3, the linear stability analysis is performed, 
and the stability condition can be obtained. The nonlinear analysis 
and the solution of the mKdV equation are derived in section 4. 
In section 5, the numerical simulation is carried out to verify the 
analysis results and conclusions are given in section 6.
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2. The extended lattice hydrodynamic model

To analyze the density of traffic flow on a single lane, Na-
gatani [31] proposed a lattice hydrodynamic model firstly with the 
considerations of car-following models and macroscopic models in 
1998, which is described by the following equations:

∂tρ + ρ0∂xρv = 0 (1)

∂tρv = aρ0 V (ρ (x + δ)) − aρv (2)

where ρ0 indicates the average density, a represents driver’s sensi-
tivity, ρ and v respectively denote the traffic density and velocity, 
δ is the average headway, and it is the inverse of ρ0, ρ(x + δ) is 
the local density at position x + δ.

Then, with dimensionless space x (let x∗ = x/δ, and x∗ is indi-
cated as x hereafter), the above model is modified and rewritten 
with its lattice version as follows:

∂tρ j + ρ0
(
ρ j v j − ρ j−1 v j−1

) = 0 (3)

∂tρ j v j = aρ0 V
(
ρ j+1

) − aρ j v j (4)

where j denotes the lattice number, v j is the local velocity and ρ j

represents the local density of lattice j at time t , respectively. V (·)
is called the optimal velocity function, it is a function of local den-
sity. With an inflection point at critical density, V (·) is showed by 
a monotonically decreasing function. The optimal velocity function 
[52] can be adopted as follows:

V
(
ρ j (t)

) = vmax

2

×
[

tanh

(
2

ρ0
− ρ j (t)

ρ2
0

− 1

ρc

)
+ tanh

(
1

ρc

)]
(5)

where ρc indicates the critical density, vmax means the maximum 
velocity.

The above model is further improved to account for the effect 
of traffic interruption probability by Peng et al. [59]. By consider-
ing the difference of optimal traffic flow on site of j and j + 1, the 
continuity equation remains preserved while the evolution equa-
tion is modified. However, the change of traffic flow is continuous 
in real traffic, and it plays an important role in stabilizing the traf-
fic flow. On the basis of it, a new lattice hydrodynamic model can 
be proposed as follows:

∂tρ j v j = aρ0 V
(
ρ j+1

) − aρ j v j

+a

t∫
t−τ0

[−α1 pρ j (s) v j (s)

+α2 (1 − p)
(
ρ j−1 (s) v j−1 (s) − ρ j (s) v j (s)

)]
ds

(6)

where τ0 is the time step, p is the interrupted probability that 
the traffic flow of lattice on site j + 1, α1 and α2 are the reactive 
coefficients.

There is no doubt that more and more factors affecting traffic 
congestion are taken into consideration and comprehensive in the 
study of continuous improvement of traffic model. However, it is 
worth noting that in the study of traffic flow, we need to consider 
not only drivers’ factors, but also the impact of geographical envi-
ronment on the stability of traffic flow, such as the effect of slope. 
Fig. 1 shows the illustration of gravitational force acting upon a 
vehicle on an uphill and downhill highway. θ is the slope of a gra-
dient road, g denotes the gravitational acceleration and m is the 
total mass of the vehicle on the lattice. And the gravitational force 
generates a force mg sin θ paralleling to the road on gradient roads, 
Fig. 1. An illustration of gravitational force upon a vehicle on a gradient highway: 
uphill and downhill.

which can reduce or enhance the maximal speed of the vehicle. On 
the basis of the effect of traffic interruption probability, a new evo-
lution equation for an extended lattice hydrodynamic model can 
be proposed, which is to describe the movement of vehicles on a 
single lane gradient highway can be obtained:

∂tρ j v j = aρ0 V
(
ρ j+1, θ

) − aρ j v j

+ a

t∫
t−τ0

[−α1 pρ j (s) v j (s)

+α2 (1 − p)
(
ρ j−1 (s) v j−1 (s) − ρ j (s) v j (s)

)]
ds (7)

∂tρ j + ρ0
(
ρ j v j − ρ j−1 v j−1

) = 0 (8)

The optimal velocity function can be got as follows:

V (ρ, θ) = V f ,max − V g,u,max

2

×
[

tanh

(
1

ρ
− 1

ρc,u,θ

)
+ tanh

(
1

ρc,u,θ

)]
(9)

for an uphill gradient road, and

V (ρ, θ) = V f ,max + V g,d,max

2

×
[

tanh

(
1

ρ
− 1

ρc,d,θ

)
+ tanh

(
1

ρc,d,θ

)]
(10)

for a downhill gradient road, where V f ,max means the maximal 
velocity on the road without any slope, V g,u,max is the maximal 
reduced velocity on uphill, and V g,d,max is the maximal enhanced 
velocity on downhill gradient roads, which can be formulated as 
follows:

V g,u,max = V g,d,max = mg

μ
sin θ (11)

where μ is a longitudinal friction coefficient, and we choose μ =
mg. ρc,u,θ = 1/hc,u,θ and ρc,d,θ = 1/hc,d,θ , they are the inverse of 
the safety distance for the vehicle on the uphill and downhill. Also, 
in the process of vehicle operation, the speed will change in an up-
hill (downhill) situation. And we can get the equations as follows:

hc,u,θ = hc (1 − ξ sin θ) and hc,d,θ = hc (1 + η sin θ) (12)

where ξ and η are constant and we take ξ = η = 1. Then the opti-
mal velocity can be integrated as follows:

V (ρ, θ) = V f ,max − V g,max

2

×
[

tanh

(
1

ρ
− 1

ρc,u

)
+ tanh

(
1

ρc,u

)]
(13)

where V g,max = V g,u,max, ρc,u = 1/hc,u , hc,u = hc (1 − sin θ), the 
uphill and downhill can be presented the positive and negative θ . 
We take −6◦ ≤ θ ≤ 6◦ . The optimal velocity function can be ob-
tained:
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V (ρ, θ) = V f ,max − sin θ

2
V 0 (ρ, θ) (14)

where V 0 (ρ, θ) is adopted by the symmetry of density as follows:

V 0 (ρ, θ) = tanh

(
2

ρ0
− ρ

ρ2
0

− 1 − sin θ

ρc

)

+ tanh

(
1 − sin θ

ρc

)
(15)

By taking the difference form of (7) and (8) and eliminating 
speed v j , the density equation is obtained:

∂2
t ρ j (t) + a∂tρ j (t) + aρ2

0 A (θ)
[
V 0

(
ρ j+1, θ

) − V 0
(
ρ j, θ

)]
+ aα1 p

[
ρ j (t) − ρ j (t − τ0)

]
− aα2 (1 − p)

[
ρ j+1 (t) − ρ j+1 (t − τ0) − ρ j (t) + ρ j (t − τ0)

]
= 0 (16)

where A (θ) = V f ,max − sin θ

2
.

3. Linear stability analysis

In this section, a linear stability analysis will be conducted, 
which is to investigate the traffic interruption probability effect 
on a gradient highway. It is proposed that the steady state is the 
uniform traffic flow with a constant density ρ0 and optimal veloc-
ity V (ρ0, θ). The steady-state solution of the homogeneous traffic 
flow can be obtained:

ρ j (t) = ρ0, V 0
(
ρ j (t)

) = V 0 (ρ0, θ) (17)

Let y j (t) be a small perturbation on site j. We can get:

ρ j (t) = ρ0 + y j (t) (18)

Inserting (17) and (18) into Eq. (16), we can get the equation 
as follows:

∂2
t y j (t) + a∂t y j (t) + aρ2

0 A (θ) V ′ (ρ0, θ)
[

y j+1 (t) − y j (t)
]

+ aα1 p
[

y j (t) − y j (t − τ0)
]

− aα2 (1 − p)
[

y j+1 (t) − y j+1 (t − τ0) − y j (t) + y j (t − τ0)
]

= 0 (19)

Expanding y j (t) = eikj+zt , we can get:

z2 + az + aρ2
0 A (θ) V ′ (ρ0, θ)

(
eik − 1

)
+ aα1 p

(
1 − e−zτ0

)
− aα2 (1 − p)

(
eik − eik−zτ0 − 1 + e−zτ0

)
= 0 (20)

Inserting z = z1 (ik)+ z2 (ik)2 +· · · into (18), the first-order and 
second-order terms of coefficient of ik are:

z1 = −ρ2
0 A (θ) V ′ (ρ0, θ)

1 + α1 pτ0
(21)

z2 = − 2 + aα1 pτ 2
0

2a (1 + α1 pτ0)
z2

1 − α2 (1 − p) τ0

1 + α1 pτ0
z1

− ρ2
0 A (θ) V ′ (ρ0, θ)

2 (1 + α1 pτ0)
(22)

When z2 < 0, the uniform steady-state flow becomes unsta-
ble for the long-wavelength models. On the contrary, the uniform 
steady-state flow remains stable if z2 > 0. Therefore, the stability 
condition for traffic flow is given by:
Fig. 2. The neutral stability curves for (a) p = 0.3, 0.6, 0.9 with fixed θ = 0◦ . (b) 
θ = −4◦, −2◦, 0◦, 2◦, 4◦ with fixed p = 0.6. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

a = − 2ρ2
0 A (θ) V ′ (ρ0, θ)

α2τ0 (1 − p) (1 + α1 pτ0) + (1 + α1 pτ0)2 + α1 pτ 2
0 ρ2

0 A (θ) V ′ (ρ0, θ)

(23)

The instability condition for the homogenous traffic flow is 
given by:

a > − 2ρ2
0 A (θ) V ′ (ρ0, θ)

α2τ0 (1 − p) (1 + α1 pτ0) + (1 + α1 pτ0)2 + α1 pτ 2
0 ρ2

0 A (θ) V ′ (ρ0, θ)

(24)

The above equation clearly shows that the traffic interruption 
probability and the slope θ on a gradient highway play an im-
portant role in stabilizing the traffic flow on a single lane. When 
α1 = α2 = θ = 0, the result of stability condition is same as the 
model of Nagatani [31].

For the novel lattice hydrodynamic model with the consider-
ation of the traffic interruption probability on a gradient high-
way, the neutral stability lines in the parameter space (ρ,a) are 
shown in Fig. 2, where ρ0 = ρc = 0.25, V f ,max = 2, α1 = 0.5 and 
α2 = 0.1. From Fig. 2 (a), it shows that the critical points will 
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rise with increasing value of p from 0.3 to 0.9, when θ = 0◦ . 
That is to say, when the influence of slope is fixed, it is effec-
tive to stabilize the traffic flow. Fig. 2 (b) shows the situation 
for θ = −4◦, −2◦, 0◦, 2◦, 4◦ , when p = 0.3. Positive and negative 
θ indicate the solution of uphill and downhill. In an uphill, the 
maximal flux increases when the slope increases. And with the 
increase of the slope, the maximal flux decreases in a downhill 
situation.

4. Nonlinear analysis and the mKdV equation

To describe the traffic evolution pattern of the novel model, 
nonlinear analysis is presented near the critical point (ρc,ac) with 
reductive perturbation method in this section. The slow variables 
X and Y for 0 < ε ≤ 1 as follows:

X = ε( j + bt), T = ε3t (25)

where b is a constant. Let ρ j (t) satisfy the equation:

ρ j (t) = ρc + εR(X, T ) (26)

Substituting (25) and (26) into (16) and expending each team 
to the fifth order of ε, then we can obtain:

ε2m1∂X R + ε3m2∂
2
X R + ε4

(
∂ T R + m3∂

3
X R + m4∂X R3

)
+ ε5

(
m5∂X∂T R + m6∂

2
X R3 + m7∂

4
X R

)
= 0 (27)

The coefficients mi (i = 1,2,3...,7) are given in Table 1, where

V ′
0 = ∂V 0 (ρ)

∂ρ
|ρ = ρc and V ′′′

0 = ∂3 V 0 (ρ)

∂ρ3
|ρ = ρc . Near the criti-

cal point (ρc,ac), we assume the value of ac as:

ac =
(

1 + ε2
)

a (28)

By taking b = −ρ2
0 A (θ) V ′

0

1 + α1 pτ0
and eliminating the second and 

third order terms of ε, we obtain:

Table 1
The coefficients mi of the model.

m1 m2

b + ρ2
c A (θ) V ′

0

1 + α1 pτ0

b2 + ρ2
c A (θ) V ′

0 − α1 pb2τ 2
0 − 2aα2 (1 − p)bτ0

2a (1 + α1 pτ0)

m4 m6

A (θ)ρ2
c V ′′′

0

6 (1 + α1 pτ0)

ρ2
c A (θ) V ′

0 + α1 pb3τ 3
0 − 3α2 (1 − p)bτ0 (1 − bτ0)

6 (1 + α1 pτ0)

m5 m3

2b − α2 (1 − p) τ0

a (1 + α1 pτ0)

ρ2
c A (θ) V ′

0 + α1 pb3τ 3
0 − 3α2 (1 − p)bτ0 (1 − bτ0)

6 (1 + α1 pτ0)

m7

ρ2
c A (θ) V ′′′

0

12 (1 + α1 pτ0)
ε4(−g1∂
3
X R + g2∂X R3 + ∂T R)

+ ε5(g4∂
4
X R + g5∂

2
X R3 + g3∂

2
X R) = 0 (29)

where the coefficients gi (1,2, ...,5) are given in Table 2.
Equation (27) can be transformed into the standard mKdV 

equation as follows:

T = 1

g1
T ′, R =

√
g1

g2
R ′ (30)

We can obtain the modified mKdV equation with an O (ε) cor-
rection term as follows:

∂T ′ R ′ = ∂3
X R ′ − ∂X R ′ 3

+ ε

[
g3

g1
∂2

X R ′ + g4

g1
∂4

X R ′ + g5

g2
∂2

X R ′ 3
]

(31)

After ignoring the O  (ε), the mKdV equation with a kink solu-
tion can be obtained:

R ′
0

(
X, T ′) = √

c tanh

(√
c

2

(
X − cT ′)) (32)

Then, the O (ε) correction is considered by assuming R ′(X, T ′)
= R ′

0(X, T ′) + εR ′
1(X, T ′). For the purpose of obtaining the prop-

agation velocity c for the kink solution, the solvability condition 
should be satisfied. As 

(
R ′

0, M
[

R ′
0

]) ≡ ∫ +∞
−∞ dX ′R ′

0 M
[

R ′
0

]
, where 

M
[

R ′
0

] = g3
g1

∂2
X R ′ + g4

g1
∂4

X R ′ + g5
g2

∂2
X R ′ 3. We get the general veloc-

ity c:

c = 5g2 g3

2g2 g4 − 3g1 g5
(33)

Subsequently, the general kink-antikink solution of the mKdV 
equation can be obtained:

ρ j (t) = ρc ±
√

g1c

g2

(
τ

τc
− 1

)
× tanh

√
c

2

(
τ

τc
− 1

)

×
[

j + (1 − cg1)

(
τ

τc
− 1

)
t

]
(34)

5. Numerical simulation

In this section, numerical simulation is exhibited for the new 
lattice model, which investigates the influence of the traffic inter-
ruption probability on a gradient highway. Then the new lattice 
hydrodynamic model of Eq. (16) is discretized as follows:

ρ j (t + 2�t)

= 2ρ j (t + �t) − ρ j (t) − a�t
[
ρ j (t + �t) − ρ j (t)

]
− �t2aα1 p

[
ρ j (t) − ρ j (t − τ0)

]
− �t2aρ2

0 A (θ)
[
V 0

(
ρ j+1, θ

) − V 0
(
ρ j, θ

)]
+ �t2aα2 (1 − p)
Table 2
The coefficients gi of the model.

g1 g2 g4

ρ2
c A (θ) V ′

0 + α1 pb3τ 3
0 − 3α2 (1 − p)bτ0 (1 − bτ0)

6 (1 + α1 pτ0)

A (θ)ρ2
c V ′′′

0

6 (1 + α1 pτ0)

ρ2
c A (θ) V ′′′

0

12 (1 + α1 pτ0)

g5 g3

ρ2
c A (θ) V ′

0 + α1 pb3τ 3
0 − 3α2 (1 − p)bτ0 (1 − bτ0)

6 (1 + α1 pτ0)

3α2τ0 (1 − p)

α2τ0 (1 − p) (1 + α1 pτ0)2 + (1 + α1 pτ0)3 + (1 + α1 pτ0)α1 pτ 2
0 ρ2

c A (θ) V ′
0
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Fig. 3. The phase diagram of the model according to different values of parameter p.
× [
ρ j+1 (t) − ρ j+1 (t − τ0) − ρ j (t) + ρ j (t − τ0)

]
(35)

where �t is the difference time step of the equation.
Periodic boundary conditions can be given and the initial con-

ditions are chosen as follows:

ρ j (1) = ρ j(0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ0, j 	= N

2
,

N

2
+ 1,

ρ0 − 0.05, j = N

2
,

ρ0 + 0.05, j = N

2
,

(36)

where the total number of lattice N = 100, t = 104 s, α1 = 0.5, 
α2 = 0.1, ρ0 = ρc = 0.25.

Fig. 3 shows the change trend of density with different values of 
traffic interruption probability when θ = 2◦ . Fig. 3 (a)-(d) show the 
time evolution of density for p = 0, 0.3, 0.6, 0.9, respectively. From 
Fig. 3 (a) to (d), we can see that the amplitude of the density wave 
is continuously decreasing. And the phenomenon is very similar to 
the solution of the mKdV equation. Therefore, it is effective to con-
sider the change of p on the stability of the lattice hydrodynamic 
model. In other words, considering the effect of the traffic inter-
ruption probability on a gradient highway can effectively alleviate 
traffic congestion.

Fig. 4 shows the density distribution when t = 10300 s, which 
corresponds to Fig. 3, when θ = 2◦ , the amplitude of density wave 
decreases as the value of p increases. This shows that the traf-
fic interruption probability can develop the stability of traffic flow 
greatly. Generally speaking, the effect of traffic interruption prob-
ability on a gradient highway should be considered in the lattice 
hydrodynamic model to enhance the stability of traffic flow.
Fig. 5 shows the traffic patterns with different values of θ in 
an uphill situation when p = 0.6. It is clear from Fig. 5 (a) that 
the amplitude of density wave is strong for θ = 0◦ in the stable 
region, and the traffic flow becomes skimble-scamble. When the 
value of θ increases from 0◦ to 6◦ , the amplitude of traffic waves 
decreases. Consequently, the non-uniform traffic flow evolves into 
a uniform and stable state when θ = 6◦ . It also means that the 
traffic congestion can be decreased when considering the slope in 
an uphill situation.

In Fig. 6, the profile of the densities at time t = 10300 s is 
shown. The amplitudes of the densities decreased when increasing 
the value of θ . When the factor of gradient highway is efficient, 
the traffic congestions can be decreased in an uphill situation.

In Fig. 7, it shows the traffic patterns with different values of 
θ in a downhill situation when p = 0.6, the patterns (a), (b), (c) 
and (d) exhibit the kink-antikink density waves. When the value 
of θ increases from 0◦ to 6◦ , the amplitude of the density waves 
increases., and it reaches its maximum state as the slope grows 
to 6◦ . Therefore, the higher the gradient, the less stable the traffic 
flow in a downhill situation. And it is necessary to considerate the 
effect of gradient highway in real traffic.

In Fig. 8, a two-dimensional diagram of density at time t =
10300 s is shown. The amplitudes of the densities increase with 
the increasing the value of α. It can be also seen that the intro-
duction of gradient highway into the traffic flow system can reduce 
traffic congestions.

In the above analysis, when the effect of traffic interruption 
probability and the gradient highway are respectively considered, 
the density curve of traffic flow has obvious fluctuation. That is to 
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Fig. 4. The density profile at time t = 10300 s under the different values of p.

Fig. 5. The phase diagram o with different values of parameter θ for uphill situation.
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Fig. 6. The density profile at time t = 10300 s under the different values of θ for uphill situation.

Fig. 7. The phase diagram with different values of parameter θ for downhill situation.
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Fig. 8. The density profile at time t = 10300 s under the different values of θ for downhill situation.
say, in the study of traffic flow, the traffic interruption probability 
and the angle of slope can effectively alleviate traffic congestion.

6. Conclusion

We proposed an extended lattice hydrodynamic model by tak-
ing the traffic interruption probability into account on a gradi-
ent highway. The stability condition can be obtained by the use 
of linear analysis. The result of the stability analysis shows that 
the effect of traffic interruption probability on a gradient highway 
can enhance the stability of traffic flow. Through nonlinear stabil-
ity analysis, we derived the kink-antikink solution of the mKdV 
equation to describe the traffic flow near the critical point. Phase 
diagram in the density-sensitivity space is given for different val-
ues of coefficients of the traffic interruption probability effect and 
the slope of the gradient highway. On the situation of different pa-
rameters in the novel model, a series of simulation are carried out. 
Numerical simulation shows that the effect of the traffic interrup-
tion probability plays an important role in enhancing the stability 
of the traffic flow on a gradient highway. And the numerical results 
are consistent with the results of linear and nonlinear analysis. It 
also shows that the traffic flow can be developed and the traffic 
jams can be suppressed by accounting for the traffic interruption 
probability on a gradient highway.
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